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The Discrete Coagulation-Fragmentation Equations: 
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The discrete coagulation-fragmentation equation describes the kinetics of cluster 
growth in which clusters can coagulate via binary interactions to form larger 
clusters or fragment to form smaller ones. These models have many applications 
in pure and applied science ranging from cluster formation in galaxies to the 
kinetics of phase transformations in binary alloys. Our results relate to existence, 
uniqueness, density conservation and continuous dependence and they 
generalise the corresponding results in [ref. 2] for the Becker-Doring equations 
for which the processes are restricted to clusters gaining or shedding one particle. 
Examples are given which illustrate the role of the assumptions on the kinetic 
coefficients and show the rich set of analytic phenomena supported by the 
general discrete coagulation-fragmentation equations. 

KEY WORDS: Existence theorems; admissibility; coagulation; fragmenta- 
tion; clustering. 

1. I N T R O D U C T I O N  

In this pape r  we discuss the ma thema t i ca l  theory  of a mode l  for the 
dynamics  of  cluster  growth.  Such models  arise in a wide var ie ty  of 
s i tuat ions;  examples  include as t rophysics ,  a tmospher ic  physics,  b iology,  
co l lo ida l  chemistry,  po lymer  science, and  the kinetics of phase  t rans i t ions  
in b ina ry  alloys. The  basis for the models  is tha t  the system under  
cons ide ra t ion  can be viewed as consis t ing of a large number  of clusters that  
can coagula te  to form larger  clusters or  f ragment  to form smal ler  ones. In  
the mode l  ana lyzed  in this pape r  the clusters are  assumed to be discrete,  

tha t  is, they consist  of a finite number  of smal ler  particles.  The part icles  
m a y  be a toms,  molecules,  cells, etc., depending  on the appl icat ion.  
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If c~ (t) >~ 0, j = 1, 2,..., denotes the expected number of clusters consisting 
of j particles (j-clusters) per unit volume, then the discrete coagulation- 
fragmentation equations are 

c j - ~  ~ (a/ k, kCj--kck--b/ k, kCj)-- (aj, kCjck--bg,~C/+k) (1.1) 
k = l  k = l  

for j =  1, 2 ..... The coagulation rates a/,~ and fragmentation rates b/,k are 
nonnegative constants with a/,k= ak , /and b/,k=bk,/. In Eq. (1.1) the first 
two terms represent the rate of change of the j-cluster due to the 
coalescence of smaller clusters and the breakup of the j-cluster into smaller 
clusters. The final two terms represent the change due to coalescence of the 
j-cluster with other clusters and the breakup of larger clusters into 
j-clusters. For a derivation of this equation and its analogue in which the 
cluster size is a continuous variable see ref. 7. The model neglects (among 
other things) the geometrical location of clusters and spatial fluctuations in 
cluster density. For further information on these effects see refs. 5 and 6. 

Since particles are neither created nor destroyed in the interactions 
described by (1.1), we expect the density p = Zg=ljcg(t) to be a conserved 
quantity. Mathematically, this is equivalent to 

lim j Wj, k(c(s) ) ds = 0 
n ~ m  j = l  k = n  j + l  

clef 
where Wj, k(c) = a/,kc/c~-bj,  kc/+k. In certain circumstances, however, the 
density is not conserved. To illustrate this and other phenomena, we 
consider some special cases. 

( a }  Pure coagulation. Here bj, k = 0  for all j and k. We further 
specialize to the following two idealized forms of coagulation kernel: 

aj, k = j ~ + k  ~ (1.2) 

aj, k = (jk ) ~ (1.3) 

where ~ > 0. The additive form (1.2) arises if we assume that binary inter- 
actions of clusters occur randomly with a rate proportional to the total 
effective surface area of the coagulating clusters. For compact clusters in d 
dimensions e =  1 - d  -a, but other values of e are also of interest. (8) The 
multiplicative form (1.3) might apply to situations in which bond linking 
was the dominant mechanism. Note that, for the kernel (1.2), the rates for 
large-large and large-small interactions have the same order of magnitude 
(i.e., a/,k ~ aj.j for large j and small k), whereas for (1.3), large-large inter- 
actions dominate. 
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If ~ >  1/2, then for the kernel (1.3) density conservation can break 
down in finite timeJ 8'9) This is interpreted as the appearance of an infinite 
cluster or gel. For the kernel (1.2) we prove in Theorem 3.6 that if a solution 
exists, then density is conserved. 

To gain some insight into the dependence of the rate of growth of 
clusters, we use a technique due to Leyvraz and Tschudi (1~ to relate 
solutions of (1.1) having different initial data. We first consider the kernel 
(1.2), so that (1.1) takes the form 

1 f CJ= ~ J~I [ ( j -  k )~ + k~] cj- kck k=1 (J~ + k~)cjck (1.4) 

Let c) be a solution of (1.4) with initial data c1(0)=6i,1. For positive 
integers n, define cn(t) = (cy(t)), j =  1, 2,..., by 

c n j ( t ) = n - l c ) ( n  ct it) 
(1.5) 

c~(t) = O, r not a multiple of n 

It is then easy to check that cn(t) is a solution of (1.4) with initial data 
given by cy(0)= n-16j.n. From (1.5) we see that the time scale for this class 
of solutions depends on the sign of 7 -  1. In fact, if ~ ~< 1, we get global 
existence for the general initial value problem (with initial data having 
finite density), while if c~ > 1, we have nonexistence of global solutions. 

For  the kernel (1.3), let c 1 be the solution of (1.1) with initial data 
e)(O) = 6j.1. It is shown in ref. 10 that the appropriate scaling is 

c~i(t)=n-lcl(n2~-lt), c~(t) = 0 otherwise (1.6) 

From (1.6), we see that ~--1/2  is the critical parameter value. Global 
solutions for the initial value problem exist for ~ ~< 1 (see ref. 9 for a proof), 
but density conservation breaks down after a finite time if ~ > 1/2. It is 
interesting to note that if ~ > 1, we can still have global existence for this 
case.(10) 

(b) Pure fragmentation. Here aj, k = 0  for all j ,k,  so that (1.1) 
becomes linear. For  any initial data with finite density, (1.1) has a density- 
conserving solution, However, for a large class of fragmentation coefficients 
(for example, bj, k = ( j + k )  ~, fl > -1 ) ,  there are solutions with density e '~ 
for any 2 > 0; in particular, solutions need not be unique. These spurious 
solutions are not of physical interest, and this leads to the problem of finding 
a criterion for selecting the correct solution for the general equation (1.1). 

(c) The Becker-Dfiring equations. Here aj,~ = bj, k = 0 if both j and k 
are greater than 1. The mathematical theory of these equations has been 
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studied in ref. 2. In this case the density is always a conserved quantity. The 
asymptotic behavior of solutions is interesting both mathematically and for 
applications. Under certain hypotheses on the rate coefficients and the 
density of the initial data, we have that 

t~0r j - - 1  j = l  

The excess density p - Ps corresponds to the formation of larger and larger 
clusters as t ~ ~ ,  and may be interpreted as a transition from microscopic 
to macroscopic clusters. See also ref. 12 for an analysis of metastable 
solutions and refs. 3 and 14 for some technical refinements. 

The aim of this paper is to obtain some of the fundamental results 
needed to extend the work on the Becker-D6ring equation to more 
realistic models in which all interactions are allowed. The class of kinetic 
coefficients that we have in mind are aj, k=O( j~+k  ~) with ~ <  1 and 
bj.k=aj, kQjQk(Qj+~) -1, where Qj~-z ,Jexp( -2 j  p) and Zs, 2, and p are 
positive constants with p < 1. (See Section 6 for a discussion.) In particular, 
we will not study situations in which coagulation can lead to density 
breakdown. In ref. 4 we use the theory developed here to study the 
asymptotic behavior of solutions. 

Before outlining our results, we review what is known about the 
mathematical theory of solutions of (1.1). Spouge (is) has proved existence 
under the assumption aj, k=  o(jk) and a technical condition on bj, k which 
implies that it is bounded (see also ref. 9). White (17) has proved existence 
under the assumptions bj, k=0 ,  aj, k<~j~+k ~, Z j ~ l j m @ ( 0 ) < v %  where 
0~<~< 1 and m > ~  is an integer. Aizenmann and Bak (1~ construct a 
complete mathematical theory for the continuous analogue of (1.1) for the 
case in which the kinetic rates are 1. In particular, they single out the 
physical solution by using semigroup theory and choosing an appropriate 
domain for the linear operator associated with the fragmentation. Finally, 
Stewart (16) has extended some of the results in this paper to the continuous 
analogue of (1.1). 

Our results relate to existence, uniqueness, density conservation, and 
continuous dependence. The existence result (Theorem 2.4) generalizes the 
corresponding result in ref. 2 for the Becker D6ring equations and gives 
global existence when the initial data has finite density and a/,k = o( j  + k). 
This is proved by taking the limit N ~ ~ of the system corresponding to (1.1) 
in which tl~e maximum cluster size is N. Theorem 2.5 shows that solutions 
of (1.1) constructed in this way conserve density, thus excluding the 
nonphysical solutions mentioned earlier. It is also useful to have conditions 
under which all solutions conserve density. Such a result is given in 
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Theorem 3.6. The condition on the fragmentation rates needed for this 
result has an interesting physical interpretation (see Section 6). 

We give two uniqueness results; the first (Theorem 4.1) concerns all 
solutions and the second (Theorem 4.2) applies only to solutions which 
conserve density. We note that while Theorem 4.1 implies uniqueness for 
our motivating example (see Section 6), it would be desirable to extend our 
uniqueness results to a larger class of kinetic rates. 

In Section 5 we study the differentiability of solutions and continuous 
dependence of solutions on initial data. Finally, in Section 6 we give a 
number of examples which illustrate the role of the assumptions on the 
kinetic coefficients. 

2. EXISTENCE OF D E N S I T Y - C O N S E R V I N G  S O L U T I O N S  

We first introduce some notation. Let 

X'={y=(yr): IlYll < oo}, HYll = ~ rlY,I 
r = l  

(X, II'[I) is a Banach space, We write y~>O if Yr~>O for each r and set 
X + = { y e X :  y~>0}. 

As well as strong (norm) convergence in X, we will make use of weak* 
convergence: a sequence ym converges in the weak* sense to y in X 
(symbolically ym *, y) if (i) SUpm [lymll < oo and (ii) y m --* y,  as m ~ oo for 
each r. 

D e f i n i t i o n .  Let 0 < T ~  oo. A solution c = (cj) of (1.1) on [0, T) is 
a function c: [0, T)-+ X + such that: 

(i) Each cj: [0, T)--+ N is continuous and sup,~[o.r)IIc(t)ll < c~. 

(ii) F o r j = l , 2  ..... 

aj, kc~(s) ds < oo, bj, kcj+k(s) ds < oo 
k = l  k = l  

for all t ~ [0, T). 

(iii) For  j =  1, 2 ..... 

k = l  

ds 

for all t ~ [0, T). 

822/61/1-2-14 
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It follows easily from the above definition that if c is a solution on 
[-0, T), then each Cr is absolutely continuous, so that c satisfies (1.1) for a.e. 
t e [0, T). 

As in earlier work on similar equations, ~1'13'1s) we prove existence of 
solutions by taking a limit of solutions of the finite-dimensional system 

wj_~,~(c)  - wj,~(c), 1 <~j~n (2.1) 

cj(0)  > 0, 1 <<.j<~n 

The following identity wilt be useful for finding bounds on solutions 
of (2.1). 

I . e m m a  2.1. Let c be a solution of (2.1) and let (&) be a sequence 
of real numbers. Then for 1 ~< m ~< n, 

�9 _ 1  E 1 
~, gjcJ--2rl(gj+k--gj--gk)Wj, k+-~gj+kWj, k+~.(gj+k--g~)Wj, k 

j = m  T 3 

(2.2) 

where 

T1 = { ( j , k ) : j ,  k>~m,j+k~n} 
T2={(j,k):m<~j+k~n, j,k<m} 
T 3 = {(j. k): 1 <.j<.m- 1, k >>.m,j+k<~n} 

with the sums equal to zero if the associated region is empty. (See Fig. 1.) 

rn n 

(a) 

rT~ rl 

{b) 

Fig. 1. Loca t ion  of the region T k for the cases (a) 2m < n, (b) 2m > n. 
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,Drool Let T4={( j ,k) :  l<~k<<.m-l , j>>-m,j+k<~n}.Thenthe Ti, 
i=1,. . . ,4,  are disjoint, and U4=lTi={(j,k): m<<.j+k<<.n}. Using the 
symmetry of the coagulation and fragmentation coefficients and (2.1), we 
have that 

~, 1 1"-~ -~__~s m ln~l ,, k 
gk ~ Wj, k g+?j=-~ ~. gj+kWj, k--~j gj W j ' k - - - 2 k : m  j : l  

j=m m<~j+k<~n "= 

the last two terms being equal. The result follows from grouping the above 
terms into common regions in j-k space. | 

I .emma 2.2. The system (2.1) has a unique solution for t>~0 with 
cj(t)>~O, 1 <~j<<.n, and ZT=ljc/(t)=~.7=ljcj(O ). 

Proof. The nonnegativity of each cj(t) may be proved in exactly the 
same way as the corresponding result in ref. 2 (see also ref. 15 for an 
alternative proof). The fact that Z~=ljcj(t)  is a constant of the motion 
follows by setting gj=j in Lemma 2.1, and the global existence follows 
from the bounds O<~cj(t)<<.j -1Z~=ljcj(0). | 

Lomma 2.3. Assume that aj.k <~ Ko jk for all j, k/> 1, where Ko is a 
constant. Let c n be a solution of (2.1) and let pn(0)= Z~= ~jcj(O). Then 

n 

for all m <~ n, t >~ O. 

Proof. By Lemma 2.1, 

d i JcT(t)= 1 dt . 2 ~ (j + k) Wj.k(C") + ~.jWj, k(C") 
J=m T2 7"3 

Hence 

in ]t dt e- '  ~=m Jcs(t) + 2mK~ 
J 

2 r= (J+k)Wj'k+~JWJ'k ~ Jc~(t)-2mK~ 
T 3 j=m 

<~e ' ~ (j+k)aj, kC/Ck+~Jaj, kC).Ck--2mKop (0) 
T2 T3 

<~ K~ 2 r2 (J + k) jkc)ck + ~Jr3 kcjc~- 2mK~ 
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Now 

and 

' k �9 . .  2 m ~ . .  ~ 2mp"(O) 2 ~ ( J +  )JkC)Ck<<. jkCjCk<<. 
T2 T2 

j2kc~.c~ <. m ~ j'kcyc~ <~ mp"(O) 2 
7"3 7"3 

The result follows. | 

The following existence theorem generalizes to the full set of discrete 
coagulation-fragmentation equations the corresponding result in ref. 2, 
Corollary 2.3, for the Becker-D6ring equations. The proof follows a similar 
pattern, the main difficulty being to find appropriate generalizations of the 
a priori estimates. However, one difference is the use of Helly's theorem 
together with the preceding Lemma 2.3 to extract a convergent subsequence 
of approximating solutions; this simplifies the corresponding argument in 
ref. 2. 

T h o o r e m  2.4. Assume that azk <~ K(j + k), for all j, k ~> 1, where K 
is a constant. Let coaX +. Then there exists a solution c of (1.1) on [0, ~ )  
with c(0) -- Co. 

ProoL Let cn(0)= (Col, Co2 ..... Con). By Lemma 2.2, the system (2.1) 
has a unique solution c ~ on [0, ~ )  with c~(t)>~O for 1 ~j<~n and 

jc~(t)= i jcy(O) for all t~>0 (2.3) 
j= l  j= l  

We regard cn(t) as an element of X + by defining c~( t )=0  if j>n.  Thus, 
Ilcn(t)l[ ~< IlCo[I and O<~c~(t)<<.j-ll]coll for all j and n. Let 

~m(t) = e jC t) + 2mKopn(O) 2 
J 

where Ko=2K.  By (2.3) and Lemma 2.3, for each fixed m, the functions 
0~(.),  n i> m, are of uniformly bounded variation on [0, oo). Hence, by 
Helly's theorem, there exists a subsequence, again denoted by 0~, such that 
~9"m(t ) --* ~gm(t) as n ~ oo for each t~>O, for some function ~m of bounded 
variation. Since 

c~(t)=j le'[#~(t)-~9~+,(t)]+ 2j 'Kopn(O) 2 

it follows that there exist a subsequence, which we continue to denote by 
c n, and functions cj: [0, ~)--~0~, each of bounded variation on every 
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compact subset of [0, oo), such that cT(t)-,cfit) as n -  ~ for each t~>0. 
Clearly, Cj(t)/> 0 and 

jcj(t)<<. Ihcoll for all t~>O (2 .4 )  
j = l  

In order to pass to the limit in the integrated form of the J th equation 
in (2.1), we will prove that for each T~>0, e > 0 ,  and positive integer J, 
there exist M > J and No > 3M such that 

;;[p ~M(t)+x~(t)]dt<e for alI n>~No (2.5) 

where 

5:1 n d e f  �9 n X m ~ �9 n n d e f  JCj, P m =  J , k C j + k  

j = m j = l  k = 2rn 

Applying Lemma 2.1 with gj=j, we obtain 

�9 1 
2~(t) = ~ jWj, k(Cn) +-~ ~ (j + k) Wj, K(C n) 

T3 T2 

(2.6) 

Let 2m < n. To obtain an estimate on the terms in the sum o v e r  T 2 in (2.6), 
we apply Lemma 2.1 with 

j for m ~<j~< 2m 

gJ= 2m 2m+l<~j<~n 

Then, with an obvious notation, 

2m 

E Jcs + 2m e; 
j = m  j = 2 m +  l 

1 
1 2 ,uJ, k WJ, k(c") + ~ ~ (J + k) Wj k(C ~) + ~ 2j k Wj, k(C') 
2 T  1 T 3 

(2.7) 

For (j, k) e T1 we have that #j,k = ~k,j and 

2 ; -  ( j +  k) for j,k<~2m 
#/,k = " for j<~2m, k>2m 

[ . - 2 m  for j > 2 m ,  k > 2 m  
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We note that 

0 ~< -#j,k ~< 2m for all (j, k) E T 1 

For (j, k) ~ T 3 we have that 

Furthermore, 

ljl for k>~2m 

)%k = for j+k<~2m 
( .2m-k  for j + k ~ 2 m + l ,  

0 ~< )v,k and 0 <~j- )V,K for all 

From (2.6)-(2.7), we obtain for 2m < n, 

where 

x'~(t) = X'm(O ) + q~,(t) -- q~,(O) 

k <2m 

Ball and Carr 

(2.8) 

(j, k) E T 3 (2.9) 

+ (J--)V,k)--~#j,k Wj, k(c'(s))ds 
T 1 u 

2m s 
q~ de=f Z jc~ + 2m c']~ 

j = m  j = 2 m + l  

j[c~(t) + @(t)] ~< 2L -!  ][corl 
j = L  

(2.10) 

cj(t) de__f qm(t ) ( 2 . 1 1 )  

Since by (2.3), (2.4), 

j~L [c~(tl--cj(t)] <~L -1 

we deduce that for each m and all t ~> O, 

am 

lim q~,(t)= ~ j@(t)+2m 
n ~ o o  j = m  j = 2 m + l  

~< oD Let T >  0. Then 0 ~< qm(t) .~ Zj= m jcj(t), so that 

lira qm(t)=O, fqm(t)l ~<const for all 
m ~ o u  

Thus, given e > 0, there exists M > J such that 

qM(t) dt < e and x~t(0) = jcoj < e/T 
j = M  

t~ [0, T] 

for all n ~ M  

(2.12) 
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By (2.11), (2.12), there exists No>  3M such that for n>~No, 

oq~M(S) ds < 2e for all t e [0, T] 

Returning to (2.10) and using (2.8), (2.9), we have that for 
n>~ No, 

~ t  

x~(t) + Jo p~(s) as 

<~e/V+ q~(t) + j+  2M aj, kc](s) c~(s) ds 
T 1 / 

From (2.13) we obtain for tE [0, T], n>~No, 

(2.13) 

t~ [0, T], 

(2.14) 

Now 

and 

fo ' xS(s )  ds + p"(~) dr ds 

~<3e+ j+ 2M aj.kcT(~)cZ(~)d~ds 
T 1 / 

(2.15) 

M - - I  n - - j  

2Jaj, kcjc~ <~K 2 Jc7 Z (J+k)C~k 
r3 j = l  k = M  

M - -  I r t - - j  

<.2K Z Jc2 Z kc; 
j = l  k = M  

~< 2K]I coil x~ (2.16) 

n n-<2KM ~ ~ (J+k)c)ck--~ " "-<4KJJcoJlx~ (2.17) 2M ~ aj.kcj c k .~ 
T 1 j = M  k = M  

Using (2.I6), (2.17) in (2.15) and applying Gronwall's inequality, it follows 
that for all t E [0, T], n >~ No, 

f~ xS(s) ds + f~ fs p"(~) dr ds<~ K,~ 

where K~ is a constant depending only on K, T, and l!coll. Since 

(2.1s) 

p"(r)dTds= (t-s)p"(s)ds 
"~0 
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it follows from (2.18) that for all n ~> N O 

fT/Zx~M(S) ds+ p"(s) ds<~Kle 
~0 

With an appropriate rescaling of T, ~, this gives (2.5). 
From the pointwise convergence of c~ (t) and (2.5) we deduce that 

jbj, kc~ jcj(s) ds<~e (2.19) 
'= k = 2M 

In particular, since M > J, 

;o f220  a s, kc~(s) ds < ~ ,  b j, kC s + ~(s ) ds < vo 
k=l 0 k=1 

For any l>2M,  n > J + l ,  t~ [0, T] we have from (2.1), (2.5) that 

fo FI J~l [ 1 c3(t)- cj(O)- [ ~ ~ ,  vvj ,,,k(cn(s))-,,=,Z W, Ac(s)) ds 

~< (2K[IcoU + 1)e (2.21) 

Letting n ~  and then l ~  in (2.21), we deduce by (2.20) and the 
arbitrariness of e that 

CJ(t)~cj(O)~-fOtI~i~lZ mJ-k'k(C(S))-~'k=l mJ'k(C(S))lds 

for all t ~> 0 and each J, as required. In particular, each cj is continuous on 

[0, ~). I 
In general, even if aj, k<~K(j+k),  solutions of (1.1) do not conserve 

density. The next result shows that for aj, k<~K(j+k),  the solution 
constructed in Theorem 2.4 conserves density. 

T h e o r e m  2.5. Assume that aj, k <~ K(j  + k) and that c is the solution 
constructed in Theorem 2.4. Then for all t/> 0, 

jcj(t) = ~ jcj(O) (2.22) 
j=l j=l 

ProoL Let c" be the solution to (2.1) with cn(0)=cj(0),  l<~j<~n. 
Then, writing n for the subsequence nk, we have that cT( t )~c j ( t )  as 
n ~ ~ for each j and all t ~> 0. We use various relations derived in the 
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proof of Theorem 2.4. In particular, from (2.7) (2.10), (2.16) and (2.17) we 
obtain for t/> 0 

f2 X~m(t) <~ X,~(O) + q~m(t) + K2 X~m(S) ds (2.23) 

where K2 is a constant. Fix t~>0 and let e>0 .  By (2.18) and 

lim q~(t)=qm(t), lim qm(t)=O, X~,,(0)= ~ jcj(O), c(O)eX + 
n - - - t o o  m --* oo 

j = m  

there exist M and N~ > M, depending on t, such that 

lq]r <e,  Ix~4(0)l <e,  x~(s)  ds<a for all n>~Nl 

(2.24) 

Using this in (2.23) gives 

'~ -< /> N1 (2.25) XM(t)..~K3a for n 

where K3 is a constant. Thus, also 

jcj(t) <~K3e (2.26) 
j = M  

Writing c~ (t) = 0 for j > n, we deduce from (2.25)-(2.26) that for n ~> N1 
oo M 1 

~ j[c; ( t ) - -c j ( t )]  <<, ~1 J[cT( t ) -c j ( t ) ]  +2K3e (2.27) 
J j 

00 , n t co Since Y]j= ~ jc) ( ) = Zj= ~ jcj(O), letting n --* oo in (2.27) gives 

oo 

j~= l .j[ cj( O ) - Cj(t)] ~< 2K3~ 

! 

Let the hypotheses of Theorem 2.5 hold, and denote 

and the result follows. 

Corollary 2.6. 
by c nk the corresponding pointwise convergent subsequence of solutions to 
(2.1). Then cnk(t)~ c(t) in X uniformly on compact subsets of [0, oo). 

ProoL We again write n for the subsequence nk. We first prove that, 
for each j, c~(t)--* cj(t) uniformly on compact subsets of [0, ~) .  For this 
it is clearly sufficient to show that for each m > 1, 

= e p~(O)- jc t) +4mKpn(O) 2 
j = l  
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converges to 

ym(t) = e p(O) - jcj(t) + 4mKp(O) 2 
j = l  

uniformly on compact subsets of [0, r ) ,  where p(0) clef ~ j o o  1 jcj(O). But this 
follows from the pointwise convergence of y~m(t) to the continuous function 
ym(t) and the fact that by Lemmas 2.2, 2.3, 

d 
dtY~m(t)<<.O, t6  [0, T), n>~m 

Let I c  [-0, oo) be compact and t n --* t in 

lim IIc'(t,)ll = lira 
n ~ o o  n ~ o o  

L By Lemma 2.2 and Theorem 2.5 

I Ic( tn) l l  = I I c (0 ! l  

Applying Lemma 2.7 below, we deduce that as n--* 0% cn(t,)--,c(t), 
c(t,) ~ c(t) in X. Hence c" --* c in C(I, X), as required. | 

Lemrna 2.7. (Cf. ref. 2, Lemma 3.3). If y n , . y  in X and 
HY"II --* I[Yil, then y" --* y in X. 

3. C O N D I T I O N S  U N D E R  W H I C H  ALL S O L U T I O N S  C O N S E R V E  
D E N S I T Y  

We first give an easily proved identity valid for solutions of (1.1) 
similar to the identity given in Lemma 2.1. The reader is encouraged to 
sketch the analogue of Fig. 1 for the regions Rk. 

Lemma 3.1. Let c be a solution of (1.1) on [0, T) and let (gj) be 
a sequence. Then for 1 ~< m ~< n and 0 ~< tl < t2 < T, 

gj[cj(t2)-cj(t ,)]= ~,(gj+k--gj--gk) 
j=rn  1 RI 

' ] + ~ , g j + k + E ( g j + ~ - - g k ) - - 2 g j  Wj, k(c(s))ds 
R2 R3 R4 

(3.1) 
where 

R1 = {(j, k): j, k >~m, j + k  <~n} 

R2={(j ,k):m<~j+k<.n,  j , k < m }  

R3 = {(L k): 1 <~j<~m- 1, k>~m,j+k<~n} 

R4 = {(j, k): m <~j<.n, j+k>n} 
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with the sums equal  to zero if the associated region is empty.  (Note  that  
R2 and R3 are empty  if m = 1.) 

Setting gj=j and m =  1 in L e m m a  3.1, to prove  that  Zg=ljcj(t) is a 
conserved quanti ty,  it is sufficient to prove  that  

lim f~ ~ j ~ W],k(C(s))ds=O (3.2) 
n ~ c z ~  j =  k = n  j + l  

Considering,  for example,  the case aj, k=j+k, bj .~=0,  it is clear that  we 
will require more  informat ion on the solution in order  to prove  (3.2). The 
basic plan is as follows. 

(a) Tak ing  gj = 1 in L e m m a  3.1 and letting n ~ 0% obta in  an identity 
of the form 

[q,(t2)- Cj(tl) ] ~ - -  fttl 2 D~(c(s)) ds (3.3) 
j = m  

m oD (b) Since ceX +, for each t, ~j=mCj(t)<~Y'ff*=mjCj(t)--*O as 
m ~ ~ .  Thus,  f rom (3.3), 

~t t2 limo~ m Dm(c(s)) ds = 0 (3.4) 
1 

The idea is to exploit  the extra informat ion contained in (3.4) to prove  
(3.2). 

Tak ing  g] = 1 in L e m m a  3.1 and letting n --* ~ ,  we formally obta in  

[cAt2)  - c j ( t l )  ] 
j = m  

-2G~ /=,,, k = m  

In order  to execute our plan, we will need to let m --* oo in (3.5) and 
to be able to manipula te  the resulting double  series. Thus,  we will require 
that  

rn 1 m - - I  

j = l  k = m - - j  

f t2 ~ aj.kcj(s) ck(s)ds<oo (3.6) 
1 j , k = l  

f,2 ~ bj, kq+k(s) ds<oo (3.7) 
I j , k = l  

This need not  be the case even if (3.4) holds. 
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E x a m p l e  3.2. Let aj, k = ( j k ) 3 ( j + k )  -2, bj, k = j + k ,  c j= j  -3. Then 
c = (cj) ~ X + and Wj, k(c) = 0 for all L k. Also, 

k = l  k = l  k = l  

so that c is a solution of (1.1). In this case Dm=O. However, the double 
sums in (3.6)-(3.7) are infinite. 

L e m m a  3.3. Let c be a solution of (1.1) on [0, T) a n d l e t 0 ~ < t l <  
t2 < T. Suppose that either (3.6) or (3.7) holds. Then (3.5)-(3.7) hold and 

lim mjtf - Wj,~(c(s))ds=O (3.8) 
m ~ o o  1 j k = m  j = l  k =  " 

Proof. Setting gj = 1 and m = 1 in Lemma 3.1 gives 

f,2 Z (3.9) 1 
--  E Q ( t z ) - C j ( t l ) ] = -  2 i+k~ ,  j+, ds 

j = l  1 . ' =  k =  

Since c e X +, the right-hand side of (3.9) is bounded independently of n. 
Hence, if either (3.6) or (3.7) holds, so does the other. Letting n ~ oo in 
(3.9) and using the dominated convergence theorem gives (3.5) for m =  1; 
the case of general m follows from adding on a finite sum. Finally, since 
c ~ X +, for fixed t we have that 

m ~, cj(t)<<, ~, j c j ( t )~O as m--*oo (3.10) 
j = m  j = m  

Combining this with (3.5) proves (3.8). | 

The following easily proved proposi t ion gives some examples of 
kinetic coefficients which satisfy either (3.6) or (3.7). 

P r o p o s i t i o n  3.4. Let c be a solution of (1.1) on [0, T). Let (rj) be 
a nonnegative sequence and let ej, k satisfy cg, k~>0 for all L k  and 
cg, k<~K(j+k ) for j>>,n o and k>~no, where K, no are constants. Then (3.6) 
and (3.7) hold in the following cases: 

(i) aj, k=r j+rk  +c~j,k. 
(ii) az~ = rjr k + c~j, k. 

(iii) bzk--0 for all j, k with j>~no and k>>,no. 

We use below the following notation: if r is an integer, then 
h ( r )=  [ ( r +  1)/2], the integer part of ( r +  1)/2. This notation is used in 
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sums over j, k space with j + k = r up to the diagonal j = k. In practice the 
reader can think of h(r) as equalling r/2. 

We show that all solutions of (1.1) conserve density under the following 
conditions (here K and no are constants): 

(HI) aj, k=rj+rk+c~i,k, where (rj) is a nonnegative sequence and 
~j,k >~0 for all j, k, and c~j,k<~K(j+k ) for all j, k>~n o. 

(H2) Z;~ojbr_j, j<~Kr for all r>~Zn o. 

Note that if ai, k = bj, k = 0 when both L k ~> no, then (H1)-(H2) are trivially 
satisfied. 

To prove conservation, we combine (3.8) with various estimates on 
sums of coagulation and fragmentation terms. 

k e m r n a  3.5 .  Assume (H1)-(H2). Let c be a solution of (1.1) on 
[0, T) and let t e  [0, T). Then if Wj, g(c(s))=aj, gcj(s)ck(s ) or I~j,k(c(s)) = 

2 jff/j,k(C(S)) ds = 0 (3.11) l i r a  
~0 j = l  k = h ( n )  

lim nfo ~ ~ I~j.k(c,s))ds=O (3.12) 
n --* c~ j =  k = n 

where 

T = { ( j , k ) : j + k > - n , k ~ h ( n ) , j ~ n - 1 }  

We first make some observations which restrict the regions of Proof. 
summation in (3.11) and (3.13). From the definition of a solution, 

t n0- -1  

limoo fo 2 Wj, k(c(s))ds=O 
j =  l k = h ( n )  

Thus, to prove (3.11), we need only consider j>~no. Also, set 
T' = {(j, k) e T: k ~< no - 1 }. Then 

(n -- j) IT/j,k(C(S) ) as <. no g/j,k(c(s) ) ds -- 0 
' j =  n o k = l  

as n ~ 0% by the definition of a solution. Thus, to prove (3.13), we need 
only sum over the region R = {(j, k)~ T: k 1> no}. 
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We estimate the coagulation and fragmentation terms in (3.11)-(3.13) 
separately. Let 

j = n  0 k - - h ( n )  j = n  k = n  

Using the assumptions on a m ,  for n sufficiently large, 

j = no k = h(n) k = h(n) 

+2 k r,c, k kck (3.14) 
] - - n  O k = h ( n )  

v,<~2 kck rjcj+ jQ (3.15) 
k = n  x j = n  "= 

From the definition of a solution, sups~ Eo,,a I[c(s)l[ < ~ and 
S~oE~=l rjcj(s)ds< ~ ,  so that as n ~  ~ ,  

j = n  j = n  

jQ(s) -- rkCk(S)) ds ~O (3.16) 
j k = l  

Using (3.14)-(3.16), ~oU,(s)ds, ~'oV,(s)ds~O as n ~  ~ ,  which proves 
(3.11)-(3.12) for the coagulation terms. Now 

w,= ~ (n--j)amQck 
R 

n -- 1 h(n) 

<~ ~ ~, (n--j)[K(j+k)+rj+rk]CjCk 
j = h ( n )  k = n - - j  

In the above sum, n - j ~< j and n - j ~< k. Thus, 

/ h(n) h(n) ~ h(n) 

j =  h(n) 1 1 j = h(n) k = 1 

so that by (3.16), S~ w,(s)ds~O as n ~  ~ .  This proves (3.13) for the 
coagulation terms. 

We now estimate the fragmentation terms. Let 

r n 

] = n  k = n  r = 2 n  j = n  
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For r >~ 2n, 
r--n h(r) h(r) 

n ~ b~_j,j<~Zn ~ br_j,j<~2 ~ j b  r j , j  
j ~ n  j = n  j - -n  

so that by (H2), O, ~< 2KZr~_ 2, rcr for n >~ no, which proves (3.12). 
Using (3.12) with n replaced by h(n), we see that to prove (3.11) we 

need only estimate 

h(n) q 

~ jb j ,  k C j + k  ~- ~ C r 2 j b  r j , j  ( 3 . 1 8 )  
j=no k=h(n) r=h(n)-t-no j=no 

where q =min(h(n), r-h(n))~ h(r). Integrating (3.18) and using (H2), we 
obtain (3.11 ). 

Finally, 
n-- l+h(n)  h(n) 

2(n--j)bj, kC~+~ = 2 Cr ~ (k+n-r)b~_k,k (3.19) 
R r=n k=s  

with s = max(n0, r - n + 1). Since r ~> n, 

h(n) h(r) 

Z (k+n-r)br_k,k<~ ~ kbr_k,k<~Kr 
k=s  k=no 

and (3.13) follows. Ii 

T h e o r e m  3.6. Assume (H1) and (H2), and let c be a solution of 
(1.1) on [0, T) with po=~,j~ljej(O). Then 

~jc~(t)---Po for all t e [0, T) 
j = l  

ProoL By (3.2), to prove the result, we have to show that 

(.t n - - i  

lira ~o ~ j Wj, k(c(s)) ds = 0 
n ~ o o  j = l  k = n - - j  

Set T =  { ( j , k ) : j + k > ~ n ,  k<~h(n), j<<.n-1}. By (3.11) it is sufficient to 
show that 

~lim~ fo ~r jWj, k(c(s)) ds:O (3.20) 

By (3.8) and (3.12), 
t n - - 1  n 1 

lira nfo ~ ~ Wj, k(c(s))ds=O (3.21) 
j ~ l  k = n - - j  
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Using the symmetry of Wj, k and (3.12) with n replaced by h(n), it 
follows that 

lira n Wj, k(c(s) ) ds = 0 
n ~ o o  

(3.22) 

Finally, by writing jWj.k = ( j - -n)  Wzk + nWj.k and using (3.i3) and (3.22), 
we prove (3.20). | 

For  future applications, it is useful to generalize (3.2). 

Theorem 3.7.  Assume (H1) and (H2). Let (gj) be a sequence with 
!gj - gkl ~< K1 tJ - kl for all j, k, where K1 is a constant.  Then if c is a solution 
of (1.1) on [0, T), for all t e  [0, T), 

nlim gj Wj, k(c(s)) ds = 0 (3.23) 
j = l  k = n  j + i  

The above result is proved in exactly the same way as Theorem 3.6. 

4. U N I Q U E N E S S  

As noted in the introduction,  in general, solutions of (1.1) need not  be 
unique (see also Section 6). However,  by imposing growth conditions on 
the kinetic coefficients, we are able to prove uniqueness. 

Theorem 4.1.  Let K >  0 and 0 ~< c~ ~< 1/2 and assume the following: 

(i) aj, k <~ K(jk) ~ for all j, k. 

(ii) x'h(r) " ~ j = l f - ~ b r _ j , j < . K r  1- for a l l r>~2.  

Let c o e X  § and T > 0 .  Then there is exactly one solution c of (1.1 on 
[0, T) satisfying c ( 0 ) =  Co. 

ProoL Let c, d be two solutions of (1.1) on [0, T) satisfying c ( 0 ) =  
d(0) = Co and set x = c - d. Let  fl = 1 - c~ and 

We show that 

O(t)= ~ jalxj(t)l 
j = l  

~9(t) ~<const. ~9(s)ds, t~ [0, T) (4.1) 

so that, by Gronwall 's  lemma, ~9(t)= 0 and c = d. 
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For 2 e N, define sgn 2 to equal 1, 0, or - 1  according as 2 > 0, 2 = 0, 
or 2 < 0. Note that if ~o(-) is an absolutely continuous function of t, then 
so is t~--~ l~0(t)[, and 

dt Iqo(t)l = sgn ~o(t) (t) a.e. 

For t e [0, T), it thus follows from the same calculation leading to Lemma 
3.1 that 

f l x j ( t ) l  = [U~(s)+ V,(s)] ds (4.2) 
j = l  

where 

1 

j+k<~n j = l  k = n - - j + l  

gj =j/~ sgn(xj) 

M:,g = Wj, k(c) - Wj, k(d) = aj, k(CjXk + dkx:) -- bj, kXj+k 

We first estimate Un. Now 

[ ( j  + k)/~ sgn(xj+ k ) -  j B sgn(x j ) -  k ~ sgn(xk)] xk 

= [ ( j +  k) ~ sgn(x j+gxk) - j~  sgn(xkxj) -  k ~] [xk[ 

<~ [ (j + k )~ + j~ - k ~] [xk[ ~ 2j~ lXk[ 

Thus, 

1 
~ ( �9  aj, kCjlXkl 

j+k<~n 

<. I( jk ej Ix l 
j+k<~n 

<.K ~ jcj ~ k~lx~l~<const. O (4.3) 
j = l  k = l  

since ~ ~< 1 - a .  We get a similar estimate for the terms involving dkxj. To 
estimate the fragmentation terms in U,,, note that 

- [ ( j +  k) a sgn(xj+ k ) - j ~  s g n ( x j ) - k  ~ sgn(xk)] xj+~ 

~< [J~ + k ~ -  ( j + k )  ~] [Xj+kl 

822/61/1-2-15 
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Thus, 

-- ~ (gj+k--gi--gk)bj.kXj+k 
j+k<~n  

<<. ~, [jfl +kfl--(j+k)fl]bj,  k[Xj+k] 
j+k<~n  

r = 2  j = l  

(4.4) 

with a r - j , j  = ( r - j ) z  + j ~  - r e ~<jt~. Also, 

r -  1 h(r) h(r) 

O~r j, jbr-j, j 4 2  ~ ~r  j, jb~ j,j<<.2 ~ jflb r j,j<<.2Kr ~ 
j = l  j = l  j = l  

so that, by (4.4), 

- ~ (&+k--&--gk)bj,  kCj+k<~const. O (4.5) 
j+k<~n  

Combining (4.3), (4.5), for all n, 

;o ;o ' U,(s) ds <~ const, oa(s) ds 

Next we show that 

(4.6) 

lim Vn(s) ds = 0 (4.7) 
n ~ o o  

It is easy to check that the assumptions on the kinetic coefficients imply 
that (HI)  and (H2) hold. Thus, from (3.11), 

lim gjMj, k ds 

~< tim J[r Wj.k(c)l + lWj.~(d)]] ds=O (4.8) 

where S =  {(j, k):k>~h(n), 1 <~j<.n}. Hence, to prove (4.7), it suffices to 
show that 

lirn f~ ~ &Mj, k ds=O (4.9) 
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where S ' =  {(j, k):j+k>~n, k<.h(n), h(n)<~j<<.n}. Now 

n 1 h(n) 

2 f f  aj, kCjCk = 2 2 aj, kCjCk <<- K 
S' j = h ( n )  k = n - - j  j = h ( n )  

Hence, 

jcj ~ Uck 
k = l  

Thus, 

Also, 

- [ ( j  + k) sgn(xj+k)-jsgn(xj)-k sgn(xk)] xj+k 

[ j +  k -  ( j +  k)] Ix i+kl  = 0 

fo U,(s) ds <~ const. O(t) 

nlim ~j~aj, kcjck ds=O (4.10) 
S '  

Applying Theorem 3.7 with gj=j~ and using (4.8) gives 

limoo 2ffWj,  k(c(s))ds=O (4.11) 
S '  

Combining (4.10) and (4.11), we deduce that 

lim j~lWj, k(c(s))l ds=O (4.12) 
n ~ o o  

Then (4.9) follows immediately, completing the proof. | 

We can also prove uniqueness of density-conserving solutions at the 
expense of making very strong assumptions about the coagulation 
coefficients. 

T h e o r e m  4.2. Suppose that aj,~ ~< K for all j, k. Let Co ~X + and 
T>0.  Then there is at most one density-conserving solution c of (1.1) on 
[0, T) with c(0)= Co. 

ProoL The proof is very similar to that given for the previous result, 
so we only give the main steps. Let c, d be density-conserving solutions 
with c(O)=d(O)=co and let O(t)=~,j~=ljlxj(t)l. From the proof of the 
previous result, (4.2) holds with fl = 1. Using azk<<.K, it is easy to show 
that if gj = j  sgn(xj), then 

(gj+k-- gj-- g~)(CjXk + Xfl~)aj,~ <~ const. 
j+k<~n  
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Finally, we have to show that 

lim gjMs, kds=O (4.13) 
n ~ o o  

where U =  {(j,k):j<~n, j + k > n } .  Since c and d conserve density, by 
applying Lemma 3.1 to Z]= lJ(cj-dj) ,  we obtain 

t' ZJMj  k ds = 0 ]imo~ (4.14) 
d O  U ' 

where Mj, k = Wi, k(c)-  Wj,~(d). Using the bounds on aj, k, it is easy to show 
that 

;o lim ~jaj, kCickds=O (4.15) 
n ~ o o  U 

Combining (4.14) and (4.15) proves (4.13) and the result follows. | 

5. C O N T I N U O U S  D E P E N D E N C E  

Solutions are not unique in general, so by gluing together various 
solutions, we can demonstrate unpleasant analytic phenomena. For  example, 
let aj, k = 0, bzk = 1. Then it is shown in Example 6.2(b) that there is a solution 

of (1.1) with ~ (0 )=0  and density Z r ~ l  r~r(t)= 1 for t > 0 .  Let c be the 
solution of (1.1) defined by 

c(t) = {0, 0 < t < T 
? ( t -  T), t >~ T 

Then c is a solution on [0, oo) with Z r ~ l  rcr(t) discontinuous at t = T. 
To obtain good analytic information on solutions, we need to filter 

out these spurious solutions. Thus, in what follows we usually assume the 
conditions of density conservation. 

T h e o r e m  5.1. Let c be a solution of (1.1) on [0, T), T~<oo. 
Assume that c conserves density on [0, T). Then c: r0, T) - - . x  + is 
continuous, and the series Zr%~ rCr(t) is uniformly convergent on compact 
intervals of [0, T). 

ProoL This follows from applying Dini's theorem to Z~= ~ rcr(t). ! 

T h e o r e m  5.2. Let c be a solution of (1.1) on [0, T), T~<oo. 
Assume aj, k ~< K(j+ k), bj, k <~ Kjk, and that c conserves density on [0, T). 
Then each cj is continuously differentiable on [0, T). 
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Proof. The growth assumptions on the kinetic coefficients and 
Theorem 5.1 imply that the right-hand side of (1.1) is continuous in t, and 
the result follows. | 

De f in i t i on .  A generalized flow G on a metric space Y is a family of 
continuous mappings ~b : [0, ov ) --+ Y with the following properties: 

(i) If ~b e G and ~ ~> 0, then ~b~ E G, where 

~ ( t )  ,~o__r ~(t + ~), t~ I-0, 0o) 

(ii) If y ~  Y, there exists at least one ~b~G with ~b(0)= y. 

(iii) If ~bjE G with ~bj(0) convergent in Y as j ~  0% then there exist a 
subsequence ~bjk of ~bj and an element ~b e G such that ~bjk(t ) --+ ~b(t) in Y 
uniformly for t in compact intervals of [0, ao). 

The following, which are analogues of results in Section 2, will be used 
in the proof of the upper semicontinuity property (iii) for the set of density- 
conserving solutions of (1.1). 

L e m m a  5 . 3 .  Assume aj, k <~ K(j + k) and let c be a density-conserving 
solution of (1.1) on [0, ~ ) .  Tfien for a.e. t~>0, 

1 
5 : m = ' ~  ( j+k)  Wj, k(C)+ ~jWj ,  k(C ) (5.1) 

Z2 Z3 

1 1 
c~m = ~2/~j,k Wj, k ( c )+5  ~ ( j+k)  Wj, k(C)+22j, gWj, k(C ) (5.2) 

Zl Z2 Z3 

and 

d 
dt [ e - '( Xm + 2Kmp2 ) ] <~ 0 (5.3) 

where 

2m 

Xm = rcr, qm = ~ rcr + 2m c r 
r = m  r = m  r = 2 m + l  

Zl={(j ,k): j ,k>>.m},  Z2={( j , k ) : j+k>~m,  j , k < m }  

Z3={( j , k ) : l< . j<<.m- l , k>~m},  p= ~ rcr(O) 
r = l  

and 2j, k, uj, k are as defined in the proof of Theorem 2.4. 
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Proof. Applying Lemma 3.1 to  X m = p - - ~ m = l  I rcr(t) gives X m =  

~,zjWj.~, where Z={(j ,k):l<<.j<<.m-1, j+k>~m}.  Since Z is the 
disjoint union of Z2 and Z3, 

Z2 Z3 

Then (5.1) follows from the symmetry of Z2. Using Lemma 3.2 and 
Proposition 3.3, we obtain a formula for the derivative of the second term 
in qm, and (5.2) follows by combining this with the derivative of the first 
term in q=. Finally, 

~m = Z jWj ,  k ~ Km E (J + k)cjck <~ 2Kmp 2 
Z Z 

from which we get (5.3). | 

T h e o r e m  5.4. Assume aj, k <<. K( j+ k) for all j, k. Let G denote the 
set of all density-conserving solutions c of (1.1) on [0, oo). Then G is a 
generalized flow on the closed metric subspace X + of X. 

Proof. By Theorem 5.1, if c ~ G, then c: [0, T)-~ X + is continuous. 
The semigroup property (i) follows from (2.1), while property (ii) follows 
from Theorem 2.4. To check property (iii), let c (") be a sequence of solutions 
of (1.1) on [0, ~ )  with each c(")~G and c(")(O)-~eo in X as n--* ~ .  We 
repeat the proofs of Theorem 2.4 and Corollary 2.6 with c (n) playing the 
role of the approximating solutions. Since the details are very similar, we 
only outline the changes required. Set 

n t n n 2 ,gin(t) = e [Xm(t ) + 2Km(p ) ] 

where p" is the density of c" and X~m = ~r~= m rcT. Lemma 5.3 ensures that 
we can apply Helly's theorem to 0,~. By using Lemma 5.3, we derive the 
analogue of (2.10): 

x;(t)=x;(O)+q;(t)-q;(O)+ 
Z3 ZI 

where 

q~,= ~ rc~ + 2m c'~ 
r = m  r = 2 m + l  

Control of X~m(0) follows from the strong convergence of cn(0). Finally, 

m - - 1  

~jaj,~c~c~<<.g ~ jc~ (j+k)c~<~2gllcnllx~ 
Z3 j =  1 k = m  

with a similar estimate for the sum over Z1. | 
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We also consider the continuous dependence of solutions with respect 
to weak* convergence in X. Recall that yJ converges in the weak* sense to 
y E X (symbolically y{ *" Yr) if 

(i) supjHyJ[t < oo. 

(ii) YS -+ Yr a s  j'--~ OO for each r =  1, 2,.... 

For  p > 0  let Bp=  { y e X :  ][Ytl ~<P}- Then (Bp, d) is a metric space 
with metric d(y,z)=Y~r~=l[yr-zr[. Clearly, a sequence { y } c B p  
converges in the weak* sense to y e X if and only if y e Br and d ( / ,  y) --+ 0 
as j--+ c~. For  p > 0  set B~-=Bpc~X+;  then B~ is a closed metric 
subspace of Bp. 

Theorem 5.5. Let &>~ 0 with g j=  o(j) as j ~ oo. Assume that 

aj, k ~ gi + gk, bj,~ <<. gj gk 

for all j ,k .  For p > 0  let Gp denote the set of all solutions c of (1.1) on 
[0, oo) with c(O)eB +. Then Gp is a generalized flow on B +. 

The proof of the above theorem is a simple application of the Arzela- 
Ascoli theorem, so we omit it. 

6. EXAMPLES 

In this section we give a number of results which highlight the role of 
the assumptions on the kinetic coefficients. We begin with nonexistence 
results. Let bi . j= 0 and ai, j =  r~ + rj. A formal calculation in ref. 8 showed 
that solutions with time-dependent densities do not exist for these kernels 
(cf. Theorem 3.6 for a rigorous proof of this). For  the case r j=j  ~, e >  1, it 
is formally argued in ref. 8 that solutions do not exist globally in time. We 
give two rigorous nonexistence results for kernels of this type. The first 
shows that for any initial data, the corresponding solution only exists for 
a finite time; the second shows that for a class of initial data, there are no 
solutions even on a short time interval. 

T h e o r e m  6.1. Let bj.k = 0 and aj,~ = rj + rk + ~j,k, where 0 ~< ~j.k ~< 
Kl( j+k)  and rj>~0. 

(i) Suppose rj ~ Kzj  ~, where /(2 > 0 and c~ > 1. If c is a solution of 
(1.1) on [0, T) with c ( 0 ) r  then T <  oo. 

(ii) Suppose j - l r j ~  co as j ~  co. Let Co = (eoj)~X + be such that 
exp(TmC~ ) ~,~=m+ljeoj does not tend to zero as m ~ oo for all 6 > 0, where 

def 
7,, = minj>m j - l r j .  Then there is no solution c of (1.1), defined on any 
interval [0, T), T > 0 ,  and with initial data c (0 )=  Co. 
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Proof. (i) Suppose for contradiction that c is a solution of (1.1) on 
[0, ~ )  with c(0)4  0. Set h(t)= Zj~=I cj(t). By Lemma 3.3, Proposition 3.4, 
and (3.5), h is absolutely continuous and 

h ( t ) - h ( O ) =  - f~ 

where 

Q(s) ds (6.1) 

aj, kcjcg >~ rjcj c~ 
Q = 2 j ,  =1 j 1 k 1 

By H61der's inequality, 

jcj cj <~ j%j  
j 1 j 1 j = l  

(6.2) 

Pm:~ ~ jaj, kdjCk~jcj ~ FkCk 
j=l k = m - - j + l  j = l  k = m + l  

B y  Theorem 5.1, there exists M >  0 such that zjm=ljcj(t)>~ p/2 for all 
m > M, t E [0, T) where p is the density. Thus, for m > M, p,, >>. (p/2)TmUm, 
SO that 

;o Um(t ) -- Um(O ) ~ (p/2)7 m Um(S ) ds 

Hence um(t)>~exp[(p/2)Tmt]Um(O), which contradicts u,~(t)~O 
m ---* o(3. | 

a s  

Using this and the conservation of density (Theorem 3.6) in (6.2) gives 
Q >~ K3h 2-~, where K 3 > 0 is a constant. Hence, from (6.1), 

h(t)<<. -K3h( t )  2 ~ a.e. t~ [-0, ~ )  

It follows easily from this that h(to)= 0 for some to > 0, which contradicts 
the positiveness of the density. 

(ii) Let c be a solution on [0, T) with c(0)= Co, where T <  oo. Set 
Urn(t) = Z~-m+ l Jcj(t) for t E [0, T). From Theorem 3.6 and Lemma 3.1 

- urn(o) = fo' p , . ( s )  ds Um(t) 

where 
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There are always Co ~ X + satisfying condition (ii) of the above theorem 
(see ref. 2, p. 670). 

Next we give an example which shows both that the density need not 
be conserved by all solutions of (1.1) and that in general we do not have 
continuous dependence of solutions with respect to weak* convergence for 
the set of density-conserving solutions. 

Example 6.2. Let a~,j=O, b~,j=(i+j) ~, so that (1.1) takes the 
form 

1 
?j= ~ k/~Ck---~cj(j--1)j ~ (6.3) 

k = . j +  1 

(a) For 2 > 0 ,  f l>  -1 ,  define a sequence ys(2) by y1(2)= 1 and 

:r j>>.l (6.4) 

where a s = 2 + � 8 9  Define cj(t)=e;'tyj(2). Writing ys=j (B+3)zj, it 
is not hard to prove that z j + ~ = ( l + ~ j ) z j ,  where 6j=O(j ~) and 
y - m i n ( 3 , 2 + / / ) .  It follows that 0--.<yj(2)..<const, j -(s+3) for all j. In 
particular, (ys(2)) e X + and 

k = j + l  k = j  

so that c =  (cs) satisfies (6.3). Thus, for f l>  --1 we have a solution c as 
defined in Section 2 with density Ke ;~t, K a constant. If, on the other hand, 
fl-G< -1 ,  then from Theorem 3.6 we see that any solution of (6.3) with finite 
density must conserve density. 

(b) Consider the special case / /=  0, i.e., a~,j = 0, b~,s= 1, so that (6.3) 
becomes 

1 
~i= ~ ek -~( j -1 )c  s (6.5) 

k = j + l  

For r =  1, 2 ..... let C~o~X + be given by C~o=(r -1 6r.~), SO that IIc~]l = 1 for 
all r and c~ converges in the weak* sense to the zero sequence as r--* oo. 
The unique density-conserving solution cr(t) of (5.4) with initial data c~} is 
given by 

c~(t)=r l(e-t/2)s l [ - 2 ( 1 - e - t / 2 ) + ( 1 - e  ' /2)2(r-j-I)] if j<r 
cj(t)=j-l(e-t/2)s 1 

c}(t) = 0 for j>r 
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Then, as r --+ oo, c r *- g=  (gj), where gj(t) = (e ,/2)./- '(1 - e ,/2)2. It is easy 
to check that g is a solution of (6.5) with g(0)=0 and Ilg(t)lL = 1 for all 
t>0 .  

By taking linear combinations of the solutions in Example 6.2, it is 
seen that solutions of (6.3) are nonunique for any initial data in the case 
f l > - 1 .  Clearly, these are nonphysical solutions, Theorems 2.9 and 4.2 
show that if we define an admissible solution of (1,1) to be a solution of 
(1.1) which is a limit of  the truncated system (2.1), then admissible solutions 
are unique and conserve density. 

Example 6.3. If aj, k = j + k ,  bj, k=0 ,  then the conclusion of 
Theorem 5.5 is false. To see this, we note that by using Theorems 5.1 and 
5.2, we can differentiate the relation in (3.5) to get 

A)/(t)= - p M ( t )  (6.6) 

where 

Also, 

M ( t ) =  ~ cj(t), p =  ~ jcj(t) 
j = l  j = l  

~l(t) = - [ P  + M(t)3 q( t )  (6.7) 

Solving (6.6)-(6.7) gives 

cl(t) = q(0)  exp{p 1M(0) [-exp(-pt) - 1 ] - pt} 

Therefore, if cr(0) *-~ Co with 

lim ~ j c ~ ( 0 ) = f i > p , =  ~, jcoj 
r ~ z j = l  j = l  

and c ~ 0, then 

and 

lim c 0 )=  Coj = 
r ~ j = l  j = l  

lim c~(t) = cm exp{(fi)-I a [ exp( - f i t )  - 1 ] - fit} 
r ~ o o  

colexp{p ' a [ e x p ( - p t ) - l ] - p t }  
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For applications to phase transitions in a quenched binary alloy, one 
set of conditions suggested by O. Penrose on the coagulation and fragmen- 

~---a 1 tation rates is that aj, k = O ( j ~ / 3 + k  1/3) and that bj, k j, kQjQk(Qj+~) , 
where Qj,.~ z s J e x p ( - ; t j  1/3) with ,~, z~ positive constants. Note that in this 
case we may have bj, k ~ j  ~/3 for j large and k bounded, while for j and k 
large with j - k  bounded, bj, k is small. The physical motivation here is that 
surface area considerations show that it is unlikely that a large cluster of 
size j +  k will split into two large clusters of size j and k (and hence 
increase the surface energy by a large amount). 

Proposition 6.4. (a) The hypotheses of Theorem 3.6 (conser- 
vation of density) are satisfied if aj, k < ~ K ( j + k ) ,  bj, k<<.K(j+k) 
e x p { 2 [ ( j + k ) P - j P - k P ] } ,  where K, 2 > 0  and 0 < p <  1. 

(b) The hypotheses of Theorem 4.1 (uniqueness) are satisfied if 
aj, k <~ K( j k )  ~, bj, k <~ K ( j  + k) 1 - ~ exp{)~[(j + k) p - jP - k p ] }, where K, .~ > 0, 
0~<~< 1/2, 0 < p < l .  

ProoL We need only check the conditions on bj, k. Fix B with 
0 < B < 2 - 2  p. Then it is easy to show that there exists r 0 such that for 
1 <~j<<.h(r) and r>~r o, 

r p - (r - j ) P  - j P  <~ - B j  p (6.8) 

Thus, in case (a), for r ~ r  o and l<~j<~h(r), using (6.8), we have that 
b r _ j , j < ~ K r e x p ( - B j P ) ,  with a similar inequality for case (b). | 
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